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NUMERICAL SOLUTION OF A NONSTEADY DIFFERENTIAL
EQUATION OF HEAT CONDUCTION

V. M. Kapinos and Yu. L. Khrestovoi UDC 536.24.02

The use of a "floating" weight is suggested in the numerical solution of a parabolic differential
equation of heat conduction with variable coefficients in integral-mean temperatures, used in
the calculation of thermal expansions of turbine components. Recommendations are given for
the determination of the optimum weights.

Heat-conduction problems which are reducible to one-dimensional problems, particularly in the calcula-
tion of the distribution of the integral-mean {emperatures of turbine components for the determination of their
thermal expansions {1, 2], lead to the following system of differential equations:

1 09

—;1—5;—=L0—;—G(z, ), =98 1), 0<2<<H, 0L T, 1)
B we—w@ = @@ @)
0z 220 0z zF

Blemo = G0 (2): (3)

where L¢ = 828/822 + A(z, 7)080z — B(z, 7)%, A, B, G, v, and p are assigned functions (B and v > 0); a is the
coefficient of thermal diffusivity.

The system (1)~(3) will be solved numerically on the grid

Opag = @y, X Oy, ={(ih, jAT), i=0,1,2, ..., 1 @
i=0, 1,2, .. .,i.)

with steps h = H/h and AT = T/jpy,.
Designating the value of the unknown grid function at the node (z; j) as 6; j and introducing the required

number 7 of real parameters, also grid functions in the general case, we obtain a parametric family of dif-
ference schemes approximating the system (1)-(3).

The approximation of Eq.(1) on a six-point pattern is written as ‘
Lo, =A%, + Bl 0<i<n 0<j<jm | 5)
a

where 01 = (85 +1 — 0j)AT, A* =A +A7 - B, A0j = 81+ — 26; +8;_4)/h?, 16; = (6341 — 8i-1)/2h are linear opera-
tors while 6y = nej + + (1 — 0)b;.

The coefficients of Eq.(1) are determined for each time layer with its weight

X = nxX;0+ (1 —n0) X X=4, B, G. (6)

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 34, No. 2, pp. 319-327, February, 1978. Original
article submitted December 31, 1976.
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The boundary conditions (2) are approximated by a conservative scheme, using the following procedure,
We multiply Eq. (1) by a function F(z, 7) such that FA =3F/9z, i.e.,

F = exp({Ad2), N
and we integrate it in the limits z4, z;. We obtain
L% = [F 99_]" —f FBodz + fFGdz - ly 9 rg—o. )
02 Jaz, a ] ot

It is easy to show that the operator L*¢; with an accuracy O(6%, & = z; — z,, over a small enough inter-
val [z;, 24], is equivalent tothe equation

z, N 24
% ) , 1 o9
* &)= |F—=}| —% Fdeﬂ,-stGdz——-— SFdz,
L* + 0(®) [ azL LS . @ ot g (%
where £ = z, or z4, since
S- wvdx — uly, Y vdx =u'vly, j (x — xp)dx = 0 (&),

which follows from a Taylor series expansion of u and v in the vicinity of x, is satisfied for the analytical
functions u(x) and v(x) in the vicinity 6 = x — x; of the point x,.

Superposing the boundary conditions (2) and Eq. (9) and setting £ = z; for the point z =0 (i = 0) and £ = 24
for z = H (i = n), we obtain, for i = 0, for example,

SFdZ.-—— [F %{1] — Fugdle, + Flaty — 81ey | FBdz + | FGdz -+ O(®).
z=0 Z {2,

2, 2y

1 0%

a Ot

2y

The approximation of the latter expression and of a similar one for the end of the rod (i =n) on a four-
point pattern is written
Lo —po, Dl i =0, 0K (10)
a
where the operator Py = Cyl — 1~)0, Pp=—Cyl — ]~)n, while the coefficients D and 5(} are determined from (6) if
one sets X =D and Dg.

In turn,
b Fl 1 an r
Cy= S, €y = _-’V— LV = jfdz, Fy = Flo—o, F, = Flysts an
Dg. = 1 Fi; + ’ chz\ , D, = L (Fivi + 5 Fdej, i=0, n,
iy ! v ,
where z; = 0 and z; = h/2 are taken for the point i = 0 while zy = H — h/2 and z, = H are taken for i = n.
The initial condition is approximated exactly:
B0 = Poli- (12)

We note that the difference approximation (10) of the boundary conditions (2) of the third kind is applicable
for writing difference expressions for boundary conditions of the first and second kinds. In fact, if 4 = vdy,
where ¢ is the temperature of the medium, is valid for the third boundary problem, then for v — © we obtain
an approximation of the first boundary problem (the Dirichlet problem), in which case 4 are assigned values
of the unknown function at the boundary. Taking ¢ and v as independent and setting v = 0, we have an approxi-
mation of the secondary boundary problem (the Neumann problem).

Let us consider the possible interpretation of the function ¥. In a one-dimensional differential equation
of heat conduction {2], which is valid for a hollow cone with a variable wall thickness and particularly for a
cylinder and a digsk, the coefficient
217
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where F,, is the cross-sectional area. Then, in aceordance with (7), F = exp ( S an/Fn) =F,. Finally, for a

3y

disk of constant cross section (z = r) we have A(z) = 1/r and F = r, while for a cylinder of constant cross
section A(z) =0and F = 1,

The difference approximation (5), (10), (12) of the system (1)-(3) comes down to the following system of
linear equations with a three-diagonal determinant;

8:.j = @0, i1 + @, E=0, 1, )
0;.; = POty + 0t + @ 0<<i<n, 13
where for points 0 <i <n '
p=hl—a)n, q=Ff1+a)n, fi=Vi2~+b)n-+ lFo,
O = fi{l—a) (1 — ) 0;_1,; + [I/Fo— (1 —m) (2 + b1 8j + (1 + @) (1 — 1) 8415 + &} (149)
ai ey ;ilhIQ’ bi f—i Eihz, gi = ai h2, FO == aAT/hzs
while for the boundary points i = 0 and n '
@ = fieen,  fi = Vie; + di)m + 1/Fol,
®©; = [, {{l/Fo— (1 — ) (¢; + d:) 0;,; + €:0k,; + da:}s (15
d; =D, dg = Dgi 12, ¢; = Cih.

In (13)and (15) k=1ifi=0andk=n —1if i =n, The system (13), connecting the two temperature —time
layers j and j + 1, is easily solved by trial run. The solution is sought in the form

8zt = Wibi—1. i1 + i (16)
The trial-run coefficients are
¥ = pil(1 —gibiy) Wi = (@ + @ DL — i)
Since ¥ = ¢y and ¥y = &y, all the coefficients up to ¥; and ¥,, inclusively, the temperature at the point
80,741 = (@y + T @)1 — 9:90) »

and finally, in accordance with (16), the entire temperature —time layer j + 1 are calculated.

Let us study the convergence of the proposed difference scheme.

The error of the scheme is written asy = 6 — 4, omitting the indices [3, 5].

The system of equations determining the error y is obtained by superposing the expressions for the er-
rors with Egs. (5), (10), and (12).

Allowing for the linearity of the operators, we write

1 Yy = A*yn + ¥ (2 T) € Onats
a
L Y= Py +¥r, i=0, n, t€osy, (17
a

yi.‘:o = 0, zEE)h,
where
- 1
'll)=_A*‘0n— —‘1~1—'ﬁ-z+G' 1IJ1==P’5:|—T ﬁt+§0

are the errors in the approximation of the differential equation and the boundary conditions, respectively. We
denote the time derivative by a dot () and the quantities at the time j + 0.5 by an upper bar ().

After transformations, the error in the approximation of the equation, with allowance for L = A¥ + OM?,
can be represented in the form

— = 3 0‘6 - ‘ ‘-.'_w ' = ) »
$p=Lo+G— _;_ &+ [(n—o.S)Lﬂ +(Ma—05) ——A— (7|B~'0'5)'ﬂB+(7IG""0-5)G] Av+ O+ A, (18)
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Fig, 1. Effect of the time step on the relative error in the weight

function for the unknown function: a) temperature variation along

length of rod [initial distribution ty = 0°C, temperature of medium

tg = 100°C (Bi =Bi; =Biy = 0,67, Fo = aat/h? = 0.25; solid curve:

exact solution; dash—dot curve: = 0; dashed curve: n= 1]; b) relative error
for the fifth point: I) Fo = 0.25, II) 0.5, I 1, IV) limit of positive
approximation; N) number of point.

The error in the approximation of the boundary conditions, with allowance for the fact that the first derivative
is approximated symmetrically relative to cross sections at a distance h/2 from the ends, is written as

= _:/_ LB + [(q— 0.5) P8 + (Moe—0.5)D6 —(1p—0.5) 8 DI At +0 (42 - Ac?). (19)
If, with allowance for (1) and (8), we set
hz
nyzo.S or T]y:O.s—f—K"E » (20)

where Y = A, B, G, P, and Dg and the index is absent, then when Fo is finite and K is a constant independent
of h and AT the approximation errors (19) and (20) are

P = O (2 + A®). 1)
For ny = 0 or 1 the error is written '
P = 0 (h2 4 Aq).

It is now seen that the procedure used in the approximation of the boundary conditions allows one to introduce a
time variable into the difference expression for the latter, to use a weight 7 for the unknown function, and to
obtain the same order of approximation at all points of the space—time grid, including the boundary points.

Samarskii [3] suggests a scheme for approximating the boundary conditions which also permits one to
obtain the estimate (21) constructed on a Taylor series expansion., For cylinders with coefficients B and G
which are constant over z at a length h/2 from the ends or for an infinite plate with a distributed heat source
in the interval (b/2, H —h/2) the difference expressions obtained by the two methods coincide. For a solid
disk, however, the differential equation has a singularity of the type 1/r for r = 0 and in such cases, as well
as when B and G are variable over z, one must give preference to the integral approach to the construction
of the approximating expressions.

Stability of the solution is obtained by applying only approximating expressions of the positive type, which
assure monotonic convergence satisfying the maximum principle [3, 4, 5]. The conditions determining the
positive approximation of the system (5), (10), (12), with allowance for Eqs, (14) and (15}, can be written as
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Fig, 2. Effect of the coefficient of heat transfer on the
relative error in the weight function for the unknown
function: a) temperature variation along length of rod,
initial distribution t, = 0°C, temperature of medium te =
100°C; solid curve) exact solution; dash—dot curve) 7 =
0.625; dashed curve) 1 = 1; Bi = Bi, =Biy =667, Fo =
0.5; b) relative error for fifth point [1) Bi = 6.67; II)

Bi =133, Fo = 0.05, II) limit of positive approxima-
tion]; N) number of point,

lal<l, 0<n<1, 1/Fo—(1—m)( + By) =0, (22)

where ¢y =2, ¢y, ¢n, Bk = bj, dy, dn, which imposes the following limits on the step in z:

h< 2sup; |4, O<i<n. (23)

It is easy to show that the fulfillment of (22) and (23) assures the stability of the trial-run algorithm, since the
following are valid in this case:

o<(p¢<1v i:O’ n, pi>0y qi>09 pi+gi<1’ O<i<n' (24)

The last equation of (22), which connects the characteristics of the space—time grid (Fo = aA7/h?) and the
weight 7 of the unknown function, is traditionally solved relative to the time step

Av R la(l — ) (6 + Byl (25)

the weight 1 is fixed for the grid Whar, and various approximation schemes are analyzed depending on the
numerical value adopted for 7. For example, explicit (=0), purely implicit (n=1), the Crank—Nicholson scheme

(1 =1/2), and others, each having its own characteristics of convergence and stability. For the explicit schemethe
expression (25) limits the stepintime [1, 6]. Thepurely implicitschemehas nolimits onthe step A7, but its rate

of convergence, as in the preceding explicit scheme, equals O(h? + A7), The Crank—Nicholson scheme [O(?® +
AT?)], like other schemes with 71 = 1/2, does not require that the relation (25) be satisfied in some cases [6, 7],
but then it does not provide monotonic convergence. ’

The present report proposes to reject the fixing of the weight 7 on the grid -‘u_)hAT and to consider the
weight 7 of the unknown function as a function on the space —time grid (4) determined at each point (i, j) by
the relation ("floating weight™)

n<1— i/iFo (e, + Bl (26)

where ¢k =2, Bg=bj, 0<i<n, ck=cj, Bx =dj, and i = 0, n. In this case stability is assured by an approxi-
mation of the positive type, and with the proven approximation (20), (21), according to the Lax theorem [9],
the solution of the difference problem converges monotonically to the solution of the system (1)-(3) with a rate
Oom? + ATY.
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Fig. 3. Relative error in the weight function for the coeffi~
cients of the equations: a) temperature variation along length
of rod, initial distribution;t, = 0°C, temperature of medium
tf = 3,337 = 0,02787%°C; (Bi = 0.67; Bi, = Bip = 6700; Fo =
0.5); solid curve) exact solution; dash—dot curve) 7y = 0;
dashed curve) ny = 1; b) relative error o for fifth point,

In fact, the error y in the solution of the problem (1)-(3), determined by the stable system (17) since it
differs from (5), (10), (12) only on the right side, depends uniformly and continuously with respect to h and
AT on ¢ and Y1 and also approaches zero as h and A7 approach zero. In actual calculations, however, the steps
h and AT are limited below mainly by the acceptability of the time grid.

In the approximation of the system (1)-(3) the weights (the numerical parameters 0 < 7 < 1) introduced
for the unknown function and for the variable coefficients have the optimum values within the interval (0, 1) in
the sense of the minimum error in the solution, since it follows from Eqs. (18) and (19} that the cofactors to
AT are opposite in sign for 7y = 0 and 7y = 1. Recommendations on the choice of the optimum weights can be
obtained from numerical experiments comparing the difference solution with the exact solution. Moreover, an
a priori examination of the conditions of convergence shows that the weight 1 of the temperature function deter-
mines both the stability and the accuracy of the difference solution. The lower limit to the values of 7 is
stipulated by an approximation of the positive type which assures stability. The weights iy for the coefficients
of the system (1)-(3) affect only the accuracy of the solution. Consequently, it is natural to conduct the experi-
ment in two stages. First, having eliminated the effect of the variability of the coefficients of the system with
time, one studies the optimum values of the weight of the temperature function (we note that in the numerical
calculation the coefficients of the system are constant with respect to T in each calculating step in time). In
the second stage one must consider the effect of the weights of the coefficients of the system on the accuracy
of the solution, using the recommendations on the determination of the optimum weight of the temperature func-
tion obtained in the first stage. The presence of two groups of numerical parameters allows us a certain arbi-
trariness in the choice of their optimum values.

The results of calculations of the difference and exact [10] solutions of a heat-conduction problem pro-
grammed on a computer were compared in the numerical experiment. A solid bounded cylinder R =0.2 m,
length L = 1 m), divided by the grid (4) into 11 sections (n =10) and with constant physical characteristics A =
35 W/mg and a = 0.83-107° m%/sec, was taken as the region of determination of the temperature function. In
this case for Eq.(1) we have

A=0, B=Bi/(2R?, G = Bt;, Bi=aR/A,
while the boundary conditions are written as
o) Bi
———— = 'ﬁ - t ’
I R ( 7

where @ and tf are the coefficient of heat exchange and the temperature at the side (Bi) and end (Biy, Biy,) sur-
faces. To determine the optimum weight 1 of the unknown function we studied the behavior of the relative error

o= (0 —B)/8

in the functions Bi and Fo, for uniform and nonuniform initial distributions, and with symmetric and asym-
metric boundary conditions at the middle (fifth) point of the rod. Examples of the calculations with a constant
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initial distribution and constant boundary conditions are presented in Figs, 1 and 2. In the second part of the
calculations the relative error was analyzed as a function of g (Fig. 3), since an exact solution was obtained
only for constant, although asymmetric, coefficients of heat exchange, and the variability of G was deter-
mined by the time variation of the temperature of the medium.

In generalizing the results of the numerical experiment, one can propose the following scheme for choos-
ing the weight of the unknown function.

The weight for the unknown temperature function must be taken as equal to 0.5, if this is allowed by
Eq. (26), or as the least of the weights providing for a positive approximation.

For the heat-conduction equation in the ranges of the coefficients determined by the boundary conditions
occurring in steam furbines one can take the weights ny, Y = B, G, D, Dg, as equal to 0.5.

However, these recommendations are not definitive only for a problem of more general form with the
coefficients of the system (1)-(3). In considering a heat-conduction problem with the conversion of boundary
conditions of the third kind into those of the first kind as a limiting transition as the coefficient of heat trans-
fer approaches infinity, one can note that as the latter increases it is natural to take a weight ever closer to
unity for the coefficient which allows for the temperature of the surrounding medium. In the limit, i.e., for
boundary conditions of the first kind, a weight of unity gives a zero error with respect to time. It may turn
out that for the coefficients the weight must be chosen from relations like (26).

Thus, the possibility of controlling the behavior of the solution using weights in calculations on grids
with relatively large steps is demonstrated. The investigation of the choice of the optimum weights for the
coefficients of the system (1)-(3) must be extended in this direction.
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