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N U M E R I C A L  S O L U T I O N  O F  A N O N S T E A D Y  D I F F E R E N T I A L  

E Q U A T I O N  O F  H E A T  C O N D U C T I O N  

V. M. K a p i n o s  a n d  Y u .  L .  K h r e s t o v o i  UDC 536.24.02 

The use of a "floating" weight is suggested in the numer ica l  solution of a parabol ic  different ia l  
equation of heat  conduction with var iable  coefficients  in in tegra l -mean  t em p e ra tu r e s ,  used in 
the calculat ion of the rma l  expansions of turbine components.  Recommendat ions  a re  given for  
the de terminat ion  of the opt imum weights.  

Heat-conduct ion prob lems  which a re  reducible  to one-dimensional  p rob lems ,  pa r t i cu la r ly  in the calcula-  
tion of the distr ibution of the in tegra l -mean  t em p e ra tu r e s  of turbine components for  the determinat ion of the i r  
t he rma l  expansions [1, 2], lead to the following sys tem of d i f ferent ia l  equations: 

l_l_. O.._~O = L O + G ( z ,  x), ~' = ~.(z, "0, O ~ z < ~ H ,  O ~ x . < T ;  (I) 
a cgT 

0 0  _ v o ( , ) 0 - -  Yo , - - - v ~  ; (2 )  
Oz Oz = 

01~=0 = % (z) ,  (3) 

where I ~  = a2O/az 2 + A ( z ,  T)av~Oz - B ( z ,  T)D, A ,  ]3, G ,  v, and/~ are assigned functions (B and v > 0); a is the 
coeff icient  of t he rma l  dfffusivity. 

The sys tem (1)-(3) will  be solved numer ica l ly  on the grid 

~ha~ = ~h • ~a~ ={(ih, ]AT), i = 0, 1, 2 . . . . . .  n, 
(4) 

j=O, 1, 2 . . . . .  i , J  

with steps h = H/n and AT = T/ jm.  

Designating the value of the unknown grid function at  the node (z i j )  as 0i, j and introducing the requ i red  
number  ~ of rea l  p a r a m e t e r s ,  also grid functions in the general  case ,  we obtain a p a r a m e t r i c  family of dif-  
fe rence  schemes  approximating the sys tem (1)-(3). 

The approximation of Eq.(1) on a s ix-point  pa t te rn  is wr i t ten  as 

l 0  T = h * 0 ~ + ~ h ,  O < i < n ,  0 ~ j ~ ] m ,  (5) 
a 

where  0 r = ( 0 j  + t  - 0j)Ar, A* =A + ~ l  - B, A0i = (0i+t - 20 i +0j-l)/h2, l0 i = (0i+l  - Oi-1)/2h are  l inear  ope ra -  
t o r s  while 071 = ~0j +t + (1 - ~)0j. 

The coefficients  of Eq. (1) a re  de te rmined  for  each t ime l aye r  with its weight 

7X = ~IxXj+~ + (I - -  nx) Xj, X = A, B, G. (6) 

Trans la ted  f rom Inzhenerno-Fiz icheski i  Zhurnal ,  Vol. 34, No. 2, pp. 319-327, Feb rua ry ,  1978. Original 
a r t i c le  submitted December  31, 1976. 
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The b o u n d a r y  cond i t ions  (2) a re  a p p r o x i m a t e d  by a c o n s e r v a t i v e  s c h e m e ,  u s i ng  the fo l lowing p r o c e d u r e .  

We m u l t i p l y  Eq. (1) by a func t ion  F (z ,  T) such tha t  FA =SF/~z,  i . e . ,  

F = exp ([,Adz), (7) 

and we integrate it in the limits z0, z I. We obtain 

L ' e = [  Oz Jz,--  ~ 

z t z l  z l  

Or 
z o z o  Zo 

Fdz=O. (8) 

I t  i s  e a s y  to show that  the o p e r a t o r  L*~~ with an a c c u r a c y  0(52),  6 = z 1 - z0, o v e r  a s m a l l  enough i n t e r -  

va l  [z  0, z l ] ,  is  e q u i v a l e n t  to the  equa t ion  

where ~ = z 0 or z I, since 

z I z t  21  

. o' 
z o Zo zo 

Fdz, (9) 

[. .f odx  - = o 
x o Xo xo  

which fol lows f r o m  a T a y l o r  s e r i e s  e x p a n s i o n  of u and v in  the v i c i n i t y  of x0, is  s a t i s f i e d  for  the ana ly t i c a l  

f unc t ions  u(x) and v(x) in  the v i c i n i t y  5 = x - x 0 of the po in t  x 0. 

Supe rpos ing  the bounda ry  condi t ions  (2) and Eq. (9) and se t t i ng  ~ = z 0 for  the po in t  z = 0 (i = 0) and ~ = z 1 
for  z = H (i = n) ,  we ob ta in ,  for  i = 0, for  e x a m p l e ,  

1 O0 Fdz = - -  Fv0~[~o ?- Fl~o~t0 - -  ~ Iz~ j' FSdz + j" FGdz + 0 (6z). 
a 0z " L -~zb: z o zo 

ze 

The approximation of the latter expression and of a similar one for the end of the rod (i =n) on a four- 
point pattern is written 

-LO~ =P,O~+b&, i = o ,  n; OG]<~i,~, (io) 
a 

where the operator P0 = Co/ - D0, Pn = -Cn /  - Dn, while the coefficients D and DG are determined from (6) i f  
one se t s  X = D and D G. 

In t u r n ,  

zt 

"Co= ~ ,  C~ = FIzov ' V = f Fdz' F~ = Ffz=~ F~ = Ftz=n' 
Zo 

(ii) 

DGi 
z I z l  

V ' ' 

z e Zo 

i =  0, n, 

where  z 0 = 0 and z I = h/2 a re  t aken  for  the po in t  i = 0 whi le  z 0 = H - h/2 and z 1 = H a r e  taken  for  i = n. 

The in i t i a l  condi t ion  is  a p p r o x i m a t e d  exac t ly :  

Oj=o = %t~. (12) 

We note tha t  the d i f f e r ence  a p p r o x i m a t i o n  (10) of the boundary  condi t ions  (2) of the t h i r d  kind is  appl icab le  
for  w r i t i n g  d i f f e rence  e x p r e s s i o n s  for  bounda ry  condi t ions  of the f i r s t  and second kinds.  In fac t ,  if  p = v~f, 
where  Sf is  the t e m p e r a t u r e  of the m e d i u m ,  is  va l id  for  the th i rd  bounda ry  p r o b l e m ,  then for  v ~ ~ we obta in  
an a p p r o x i m a t i o n  of the f i r s t  bounda ry  p r o b l e m  (the D i r i c h l e t  p r o b l e m ) ,  in which case ~ f  a re  a s s i g n e d  va lues  
of the unknown func t ion  a t  the boundary .  T a k i n g  p and v as  i ndependen t  and se t t ing  v = 0, we have an app rox i -  
m a t i o n  of the s e c o n d a r y  boundary  p r o b l e m  (the N e u m a n n  p rob lem) .  

Let  us  c o n s i d e r  the p o s s i b l e  i n t e r p r e t a t i o n  of the func t ion  F.  In a o n e - d i m e n s i o n a l  d i f f e r en t i a l  equa t ion  
of hea t  conduct ion  [2], which is  va l id  for  a hollow cone with a v a r i a b l e  wal l  t h i cknes s  and p a r t i c u l a r l y  for  a 
c y l i n d e r  and a d i sk ,  the coef f ic ien t  
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A ( z ) =  1 dF.  
F,~ dz 

F n is the c r o s s - s e c t i o n a l  a r e a .  Then ,  in a c c o r d a n c e  with (7), F = exp(  ~ dFn/Fn)  = F n. F ina l ly ,  f o r  a w h e r e  

d i s k  of  cons tan t  c r o s s  s ec t ion  (z = r) we have A(z) = 1/r  and F = r ,  while  f o r  a cy l inder  of  cons tan t  c r o s s  
sec t ion  A ( z )  = 0 a n d  F = 1. 

The d i f fe rence  a p p r o x i m a t i o n  (5), (10), (12) of  the s y s t e m  (1)-(3) c o m e s  down to  the fol lowing s y s t e m  of 
l i n e a r  equa t ions  with a t h r e e - d i a g o n a l  d e t e r m i n a n t :  

0~.i = q~0~.i+~ + ~ '  i = 0, n, 

Oi,i = =  piOi_l,i+ 1 + q~O~+~.i+~ + r O < i < n ,  (13) 

w h e r e  f o r  points  0 < i < n 

Pi = fi(1 --ai)TI, q, = f,(1 + a i ) ~ ,  fl = I / [ (2+  b,)~ + 1/Fot, 

@~ = [~ {(1 - -  al) (1 - -  71) 0t-l.i  + [1/Fo - -  (1 ~ ~) (2 + bi)l Oi.i + (1 + ai) (1 - -  ~1) 0i+l.i + gi}, (14) 

a~ = ~4,h/2, bi = B, l~z, gi = (}i h~. F o = a A ' U h  ~, 

while  f o r  the boundary  points  i = 0 and n 

~P, = fiCirl, [i = l/[(c, + d , ) ~  + 1/Fob 

@i = fi {[1/Fo-- (1 - -  q) (ci + di)] Oi.i + c~O~.l + da~}, (15) 

d i -= / ) i h2 ,  dGi = D6 i  h 2, C i = Cih .  

In (13) and (15) k = 1 if i = 0 and k = n - 1 if  i = n. The s y s t e m  (13), connec t ing  the two t e m p e r a t u r e - t i m e  
l a y e r s  j and j + 1, is e a s i l y  so lved  by t r i a l  run.  The  solut ion is sought  in the f o r m  

Ot,i+t = ~Oi-~ , i+~  + W~. (16) 

The t r i a l - r u n  coef f i c ien t s  a r e  

~ = p~/(l - - q ~ + i ) ,  ~I'~ = (@~ + q~R'~+,)/(1 - - q ~ + , ) .  

Since On = ~a and ~n = ~n ,  all  the coef f ic ien t s  up to ~t and /i' l ,  i nc lus ive ly ,  the t e m p e r a t u r e  at  the point  

0oa+, = (r + ~,%)/0 - -~ ,%) ,  

and finally, in accordance with (16), the entire t empe ra tu r e - t ime  layer  j + 1 are calculated. 

Let  us  s tudy the c o n v e r g e n c e  of  the p r o p o s e d  d i f f e rence  scheme .  

The  e r r o r  of  the s c h e m e  is wr i t t e n  as  y = 0 - J, omi t t ing  the indices  [3, 5]. 

The s y s t e m  of equa t ions  d e t e r m i n i n g  the e r r o r  y is obta ined  by supe rpos ing  the e x p r e s s i o n s  fo r  the e r -  
r o r s  with Eqs .  (5), (10), and (12). 

w h e r e  

Al lowing fo r  the l i nea r i ty  of the o p e r a t o r s ,  we wr i t e  

y, = A*y~ + $, (z, x) E ~o~,, 
a 

1 y~ = p y .  + * r ,  i = o, n, ~E~A,, 
a 

y k = 0 =  O, zE~h, 

(17) 

" a a 

a r e  the e r r o r s  in the app rox ima t ion  of  the d i f fe ren t ia l  equat ion  and the boundary  condi t ions ,  r e spec t ive ly .  We 
denote the t ime  de r iva t ive  by a dot  (~) and the quant i t ies  at  the t ime j + 0.5 by an upper  bar  (~). 

Af te r  t r a n s f o r m a t i o n s ,  the e r r o r  in the app rox ima t ion  of the equa t ion ,  with a l lowance  fo r  L = A* + O(h2), 
can be r e p r e s e n t e d  in the f o r m  

[ = ' ~ ]  0(h~+hxz).  (18) ~ +  ( ~ - - 0 . 5 ) L ~ + ( n A - - 0 . 5 )  00 ] - - ( n ~ - - 0 . 5 ) O B + ( ~  ~ - 0 " 5 ) c  A x +  
= LO + 6 - -  ~ -  Oz 
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Fig.  1. E f fec t  of  the t ime s tep  on the r e l a t ive  e r r o r  in the weigh t  
funct ion fo r  the unknown funct ion:  a) t e m p e r a t u r e  va r i a t i on  a long 
length of  r od  [initial d i s t r ibu t ion  t o = 0~ t e m p e r a t u r e  of m e d i u m  
fff = 100~ (Bi =Bi  0 =Bi  n = 0.67, Fo = aAT/h 2 = 0.25; sol id  cu rve :  
exac t  so lut ion;  d a s h - d o t  cu rve :  7 = 0; dashed  cu rve :  ~= 1]; b) r e l a t ive  e r r o r  
for the fifth point: I) Fo = 0.25, II) 0.5, III) 1, IV) l imi t  of pos i t ive  
approx imat ion ;  N) number  of point.  

The e r r o r  in the app rox ima t ion  of  the boundary  condi t ions ,  with a l lowance  fo r  the fac t  that  the f i r s t  de r iva t ive  
is app rox ima ted  s y m m e t r i c a l l y  r e l a t ive  to c r o s s  sec t ions  at  a d i s t ance  h/2 f r o m  the ends ,  is wr i t t en  as  

1 L* ~ + [(~1 - -  0.5) P-~ + 01oG--0.5)D--a --(~lo--0.5) ~ D] AT + 0 (h 2 + A~). (19) 
Cr = T 

If,  with a l lowance fo r  (1) and (8), we se t  

h 2 
TIY----0.5 or ~IY----0-5+K AT (20) 

w h e r e  Y = A,  B, G, P ,  and D G and the index is absen t ,  then when Fo is f inite and K is a cons tant  independent  
of h and AT the app rox ima t ion  e r r o r s  (19) and (20) a re  

= O(h  z + A~2) �9 (21) 

F o r  ~/y = 0 o r  1 the e r r o r  is wr i t t en  

r = 0 (h 2 + A~). 

I t  is  now seen  tha t  the p r o c e d u r e  used  in the app rox ima t ion  of  the boundary  condi t ions  al lows one to in t roduce  a 
t ime va r i ab l e  into the d i f fe rence  e x p r e s s i o n  fo r  the l a t t e r ,  to  use  a weight  71 for  the unknown funct ion,  and to 
obtain the s a m e  o r d e r  of  app rox ima t ion  at  all  points  of the s p a c e - t i m e  gr id ,  including the boundary  points .  

S a m a r s k i i  [3] sugges t s  a s c h e m e  fo r  app rox ima t ing  the boundary  condit ions which a l so  p e r m i t s  one to 
obtain the e s t i m a t e  (21) c o n s t r u c t e d  on a T a y l o r  s e r i e s  expansion.  F o r  cy l inde r s  with coeff ic ients  B and G 
which  a r e  cons tan t  ove r  z at  a length h/2 f r o m  the ends  o r  fo r  an infinite plate  with a d i s t r ibu ted  hea t  sou rce  
in the in t e rva l  (k/2 ,  H - h/2) the d i f f e rence  e x p r e s s i o n s  obta ined by the two methods  coincide.  F o r  a sol id  
d i sk ,  h o w e v e r ,  the d i f fe ren t i a l  equat ion has  a s ingu la r i t y  of  the type 1/r  fo r  r = 0 and in such c a s e s ,  as  well  
as  when B and G a re  va r i ab l e  o v e r  z,  one m u s t  give p r e f e r e n c e  to the in tegra l  approach  to the cons t ruc t ion  
of  the app rox ima t ing  e x p r e s s i o n s .  

Stabil i ty of the solut ion is obta ined  by apply ing  only app rox ima t ing  e x p r e s s i o n s  of the posi t ive  type ,  which 
a s s u r e  mono ton ic  c onve rge nc e  sa t i s fy ing  the m a x i m u m  pr inc ip le  [3, 4,  5]. The condi t ions  de t e rmin in g  the 
pos i t ive  app rox ima t ion  of  the s y s t e m  (5), (10), (12), with a l lowance fo r  Eqs .  (14) and (15), can be wr i t t en  as  
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Fig. 2. Ef fec t  of the coeff icient  of heat  t r ans fe r  on the 
re la t ive  e r r o r  in the weight function for  the unknown 
function: a) t empe ra tu r e  var ia t ion  along length of rod,  
initial distr ibution t o -- 0~ t em p e ra tu r e  of medium tf = 
100~ solid curve) exac t  solution; d a s h - d o t  curve) 7 = 
0.625; dashed curve) W = 1; Bi = Bi 0 =Bi n =6.67, Fo = 
0.5; b) re la t ive  e r r o r  for  fifth point [1) Bi = 6.67; II) 
Bi = 133, Fo = 0.05, III) l imit  of posi t ive approx ima-  
tion]; N) number  of point. 

[a~l~< 1, 0~<~1~ 1, 1/Fo--(1--n)(ch-~Bk)>~0, (22) 

where c k = 2, Co, Cn, Bk = bi, do, dn, which imposes  the following l imi ts  on the step in z: 

h<~2/sup~jIAi ,  0 < / < n .  (23) 

It is easy  to show that the fulf i l lment  of (22) and (23) a s su re s  the stabil i ty of the t r i a l - r u n  a lgor i thm,  since the 
foUowing a re  valid in this case:  

0~<~0t<l,  i = 0 ,  n, p i > 0 ,  q ~ > O ,  p i + q ~ < l ,  0 < i < n .  (24)' 

The las t  equation of (22), which connects  the cha rac t e r i s t i c s  of the s p a c e ' t i m e  grid (Fo = a~T/h 2) and the 
weight 7 of the unknown function, is t radi t ional ly  solved re la t ive  to the t ime step 

A'~ ~ h2/[a (1 - -  ~l) (ch -}- B~)I, (25) 

the weight ~ is f ixed for  the grid ~h~T,  and var ious  approximation schemes  a re  analyzed depending on the 
numer ica l  value adopted for  7. F o r  example,  explici t  (77 = 0), purely  implici t  07 = 1), the Crank-Nicho l son  scheme 
(~ =1/2), and o thers ,  each having its own cha rac t e r i s t i c s  of convergence and stability.  F o r  the explici t  scheme the 
express ion  (25) l imits  the step in t ime [1, 6]. Th ep u re ly  Implicit  s ch em eh as  no l imits  on the step A% but its ra te  
of convergence ,  as in the preceding expl ic i t  scheme,  equals O(tl 2 + ~r ) .  The Crank-Nicho l son  scheme [O012 + 
AT2)], like other  schemes  with 7 ~ 1/2, does not r equ i re  that the re la t ion (25) be satisfied in some cases  [6, 7], 
but then it does not provide monotonic convergence.  

The p resen t  r e p o r t  p roposes  to r e j e c t  the fixing of the weight 7 on the grid ~hAr  and to consider  the 
weight ~ of the unknown function as a function on the s p a c e - t i m e  grid (4) de termined at each point (i, j) by 
the re la t ion ("floating weight") 

n~< 1 - -  i/[Fo (c~ + Bk)l, (26) 

where  c k = 2 ,  B k = b i ,  0 < i  < n ,  c k = c i ,  B k = d  i ,  a n d i  = 0, n. In this case stabili ty is a s sured  by an approxi-  
mation of the posit ive type,  and with the proven approximat ion (20), (21), according to the Lax theorem [9], 
the solution of the difference problem converges  monotonical ly to the solution of the sys tem (1)-(3) with a ra te  
O(h 2 + aT2). 
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Fig. 3. Relative e r r o r  in the weight function for  the coeffi-  
cients of the equations: a) t empera tu re  var ia t ion along length 
of rod,  initial distribution;t0 = 0~ t empera tu re  of medium 
tf = 3 . 3 3 T "  0~0278T2~ (Bi = 0.67; Bi 0 - Bin = 6700; Fo = 
0.5); solid curve) exact solution; d a s h - d o t  curve) ~/y = 0; 
dashed curve) ~y = 1; b) relat ive e r r o r  a for  fifth point. 

In fact ,  the e r r o r  y in the solution of the problem (1)-(3), determined by the stable sys tem (17) since it 
differs  f rom (5), (10), (12) only on the r ight  side,  depends uniformly and continuously with respec t  to h and 
AT on @ and OF and also approaches zero  as h and AT approach zero.  In actual calculat ions,  however ,  the steps 
h and AT are  l imited below mainly by the acceptabil i ty of the t ime grid. 

In the approximation of the sys tem (1)-(3) the weights (the numer ica l  pa r ame te r s  0 < ~ < 1) introduced 
for  the unknown function and for  the var iable  coefficients have the optimum values within the interval (0, 1) in 
the sense of the minimum e r r o r  in the solution, since it follows f rom Eqs. (18) and (19) that the cofacters  to 
AT are  opposite in sign for  ~y = 0 and ~y = 1. Recommendat ions  on the choice of the optimum weights can be 
obtained f rom numer ica l  exper iments  comparing the difference solution with the exact  solution. Moreover ,  an 
a p r io r i  examination of the conditions of convergence shows that the weight ~ of the tempera ture  function de t e r -  
mines both the stabili ty and the accuracy  of the difference solution. The lower l imit to the values of ~ is 
stipulated by an approximation of the positive type which a s su re s  stability. The weights ~y for the coefficients 
of the sys tem (1)-(3) affect only the accuracy  of the solution. Consequently, it is natural  to conduct the exper i -  
ment in two stages.  F i r s t ,  having el iminated the effect  of the variabi l i ty  of the coefficients of the sys tem with 
t ime,  one studies the optimum values of the weight of the t empera tu re  function (we note that in the numerical  
calculation the coefficients of the sys tem are constant with respec t  to T in each calculating step in time). In 
the second stage one must  consider  the effect of the weights of the coefficients of the sys tem on the accuracy  
of the solution, using the recommendat ions  on the determinat ion of the optimum weight of the tempera ture  func- 
tion obtained in the f i r s t  stage. The presence  of two groups of numer ica l  pa r ame te r s  allows us a certain a rb i -  
t r a r ines s  in the choice of their  opt imumvalues .  

The resul ts  of calculations of the difference and exact  [10] solutions of a heat-conduction problem p ro -  
g rammed  on a computer  were  compared in the numerica l  experiment.  A solid bounded cylinder OR = 0.2 m, 
length L = I m ) ,  divided by the grid (4) into 11 sections (n = 10) and with constant physical  charac te r i s t i cs  X = 
35 W/mg and a = 0.83.10 -5 m2/sec,  was taken as the region of determinat ion of the t empera tu re  function. In 
this case for  Eq.(1) we have 

A = O ,  

while the boundary conditions are  wri t ten as 

B=Bi/(2R2), O=Bt s, Bi=aR/~., 

08 Bi 
( 8  - is) ,  

On 17 

where ~ and tf are the coefficient of heat  exchange andthe tempera ture  at the side (Bi) and end (Bi0, Bin) s u r -  
faces.  To determine the optimum weight 7/ of the unknown function we studied the behavior of the relative e r r o r  

= (o . -  8)/8 

in the functions Bi and Fo, for  uniform and nonuniform initial dis t r ibut ions,  and with symmet r i c  and a sym-  
met r i c  boundary conditions at the middle (fifth) point of the rod. Examples of the calculations with a constant 
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initial distribution and constant boundary conditions are  presented in Figs. 1 and 2. In the second part  of the 
calculations the relative e r r o r  was analyzed as a function of ~G (Fig. 3), since an exact solution was obtained 
only for constant, although asymmetr ic ,  coefficients of heat exchange, and the variability of G was de ter -  
mined by the time variation of the temperature  of the medium. 

In generalizing the resul ts  of the numerical experiment,  one can propose the following scheme for choos- 
ing the weight of the unknown function. 

The weight for  the unknown temperature  function must be taken as equal to 0.5, if this is allowed by 
Eq. (26), or as the least  of the weights providing for a positive approximation. 

For  the heat-conduction equation in the ranges of the coefficients determined by the boundary conditions 
occurring in steam turbines one can take the weights ~y,  Y = B, G, D, DG, as equal to 0.5. 

However, these recommendations are not definitive only for a problem of more general form with the 
coefficients of the system (1)-(3). In considering a heat-conduction problem with the conversion of boundary 
conditions of the third kind into those of the f i r s t  kind as a limiting transition as the coefficient of heat t r ans -  
fer  approaches infinity, one can note that as the lat ter  increases it is natural to take a weight ever closer to 
unity for the coefficient which allows for the temperature  of the surrounding medium. In the limit,  i .e . ,  for 
boundary conditions of the f i r s t  kind, a weight of unity gives a zero e r r o r  with respect  to time. It may turn 
out that for  the coefficients the weight must be chosen from relations like (26). 

Thus, the possibility of controlling the behavior of the solution using weights in calculations on grids 
with relatively large steps is demonstrated. The Investigation of the choice of the optimum weights for the 
coefficients of the system (1)-(3) must be extended in this direction. 
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